If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=112+42x
We move all terms to the left:
7x^2-(112+42x)=0
We add all the numbers together, and all the variables
7x^2-(42x+112)=0
We get rid of parentheses
7x^2-42x-112=0
a = 7; b = -42; c = -112;
Δ = b2-4ac
Δ = -422-4·7·(-112)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-70}{2*7}=\frac{-28}{14} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+70}{2*7}=\frac{112}{14} =8 $
| 21=c5+11 | | y=70(.17)^4 | | 2x=6+96 | | X+85=85+2x | | (6x+4)=(8x+12) | | 5b+3=8b | | 6(5-x)+2(3-x)=13 | | 69+x+20=180 | | -7+2x=6 | | y-9=52 | | x+40+x+56=180 | | 36=b-31 | | h-17=13 | | n+8=46 | | v-17=81 | | 6=h-11 | | 4x-10=2x+8x | | 3/4x-11=-195 | | 8(2x+5)=10x+13 | | x+40+x+56=90 | | -25/2=x/4 | | 8(2x+5)=10x+5 | | x^2+2^x=4 | | 7x2−14x=0 | | 2^x+x^2-4=0 | | 36=3x–9 | | 7-x+5(x-3)=10-3(x-3) | | 9x+5=2x(-9) | | 0,2(10x+3)+3x=4(2x-2)+3,8 | | 6(9-2x)=-(4-7x) | | 37+x=43 | | 5x-(3+2x)=-3x-9 |